Законы земледелия и агроэкологии
УПЪДБОЙЕ ДПЛХНЕОФПЧ ПОМБКО
дПЛХНЕОФЩ Й ВМБОЛЙ ПОМБКО

пВУМЕДПЧБФШ

Администрация
Механический Электроника
биологии
география Навигация астрономия геология туризм экологии
дом в саду
история
литература
маркетинг
математике
медицина
музыка
образование
психология
разное
художественная культура
экономика


Законы земледелия и агроэкологии

экологии


Отправить его в другом документе Tab для Yahoo книги - конечно, эссе, очерк Hits: 1935


дтхзйе дплхнеофщ

УТИЛИЗАЦИЯ ОТРАБОТАННЫХ ШПАЛ
Методические основы проведения оценки воздействия на биологические ресурсы
ОБРАБОТКА И УТИЛИЗАЦИЯ ОСАДКОВ БЫТОВЫХ И ПРОИЗВОДСТВЕННЫХ СТОЧНЫХ ВОД
Экологическое обоснование на стадии выбора земельного участка
Подготовка окончательного варианта материалов по оценке воздействия на окружающую среду
Содержание проекта "Заявление о воздействии на окружающую среду"
Экологическая оценка засоления и осолонцевания почв
Требования государственной экологической экспертизы к исходной информации в предпроектной (проектной) документации
Разработка документации при инвестиционном проектировании
ПЕРЕРАБОТКА И УТИЛИЗАЦИЯ ОТХОДОВ ПЛАСТМАСС
 

Законы земледелия и агроэкологии

Биотехносфера – это область нашей планеты, в которой существует живое вещество и созданные человеком урбано-технические объекты и где проявляется их взаимодействие и влияние на окружающую среду (Хильми Г.Ф.). В отличие от биосферы, биотехносфера – не самоуправляющаяся организованная система, а сложный конгломерат многих подсистем, которыми управляет человек. Это подсистемы не аккумулируют, а расходуют энергию, биомассу и кислород биосферы.

Основные функции общественного производства, которые реализуются в биотехносфере следующие: 1. Человек в первом звене биологического круговорота выполняет автотрофную функцию (увеличивая продуктивность агрофитоценозов). 2. Человек расширяет гетеротрофное звено биологического круговорота вещества и потока энергии (удлиняет пищевые цепи и увеличивает количество функционирующего в них живого вещества). 3. Человек выполняет роль деструктора органических вещств. 4. Человек берет на себя функции физико-химического и биологического выветривания. 5. Выполняет в осуществлении биологических круговоротов не только космическую, но и субстратно-энергетическую роль (Игнатов А.И., Исаев С.И., 1984).

В агрофитоценозах, в отличие от естественных сообществ, нарушаются взаимосвязи, они испытывают постоянное антропогенное воздействие. Сельскохозяйственное использование почв изменяет биопродуктивность системы, а следовательно, и накопление в ней энергии. Процессы деградации почв и ландшафтов чаще соответствуют увеличению энтропии или меры беспорядка системы, а также ее долговечности и надежности. Непрерывное поддержание и регулирование природных процессов в желательном направлении и на должном уровне составляет отличительную черту культурного ландшафта, в сравнении со стихийно нарушенным, обреченным на деградацию или длительный адаптационный процесс (Кирюшин В.И., 1996). Культурный ландшафт менее устойчив, чем первичный природный, т.к. естественные механизмы саморегулирования в нем нарушены, и требуются усилия по его поддержанию. Естественный ландшафт стремится отторгнуть чуждые ему элементы и вернуться к первоначальному состоянию.



 Изменение ландшафта, испытывающего на себе воздействие челове 242j93gc ка, может оказаться необратимым. Именно поэтому, для регулирования агроэкосистем, необходимо учитывать законы земледелия. Принятые в земледельческой науке законы (равнозначности и незаменимости факторов жизни растений, минимума, оптимума, максимума, совокупности действия факторов, возврата, убывающего плодородия почв) определяют взаимодействие факторов жизни растений в процессе создания урожая.

1. Важное значение имеет оценка допустимого уровня антропогенного воздействия на агрофитоценозы.

Правило меры преобразования природных систем запрещает при их эксплуатации переходить некоторые пределы, за которыми теряется их способность к самоподдержанию (самоорганизации и саморегулированию). В наиболее уязвимых районах коренным преобразованием может быть охвачено не более 1% площади экосистем, находящихся в природно-естественном состоянии. Площадь коренным образом измененных экосистем в наиболее благоприятных условиях может достигать 40%, после чего ущерб резко возрастает (Реймерс Н.Ф.).

Правило цепных реакций «жесткого» управления природой свидетельствует о том, что создание объектов, меняющих природные процессы, ведет к природным цепным реакциям, значительная часть которых оказывается экологически, социально и экономически неприемлемыми в длительном интервале времени. Биосистема, попадая в экстремальные условия, упрощается, становится более «жесткой», у нее уменьшается число степеней свободы (Шакин В.В.).

2. Сельскохозяйственное использование почв и выбор систем земледелия основаны на оценке факторов, необходимых для жизни растений.

Закон единства растений и среды Вернадского В.И. говорит о том, что жизнь развивается в результате постоянного обмена веществом и информацией на базе потоков энергии в совокупном единстве среды и населяющих ее организмов. Согласно правилу Вильямса В.Р., четыре основных экологических фактора: свет, тепло, питание и вода – являются равнозначными и незаменимыми (замещаемость существует лишь в некоторых пределах).

Закон компенсации факторов Рюбеля Э. Свидетельствует о том, что отсутствие или недостаток некоторых экологических факторов может быть компенсирован другим близким фактором. Например, недостаток света частично может быть компенсирован для растений обилием диоксида углерода. Увядание растений можно приостановить как увеличением количества влаги в почве, так и снижением температуры воздуха, что уменьшает испарение. В ряде случаев, климатические факторы могут быть замещены эдафическими. Сухость и теплота известковых почв замедляет более южный климат. Потребность растений в определенных факторах жизни может быть уменьшена за счет взаимовлияния других факторов.

Закон совокупности действия факторов (закон эффективности факторов, закон совокупности действия), сформулированный Митчерлихом Э., Бауле Б., Тинеманом А. Говорит о том, что взаимосвязь экологических факторов и их взаимное усиление и ослабление определяют их воздействие на организм и успешность его жизни. При этом, важны не только воздействие извне, но и физиологическое состояние организма.

Закон неоднозначного (селективного) действия фактора на различные функции организма гласит, что любой экологический фактор неодинаково влияет на функции организма, оптимум для одних процессов – не есть оптимум для других.

3. Для получения высоких урожаев необходим поиск факторов, в наибольшей степени, лимитирующих рост и развитие растений.

Закон минимума Либиха Ю. Свидетельствует о том, что успешный рост и урожайность сельскохозяйственных культур зависят от веществ, находящихся в минимуме, по сравнению с другими агрохимически необходимыми веществами.

По закону минимума Блэкмана Ф., факторы среды, имеющие в конкретных условиях наихудшие значения, особенно ограничивают возможность существования вида в данных условиях, вопреки и несмотря на оптимальное сочетание других отдельных условий.

С нашей точки зрения, в наибольшей степени лимитирующими рост и развитие растений являются те факторы почвенного плодородия, которые обусловливают наибольшие затраты энергии при развитии на этих почвах растений. Следует отметить, что для сельскохозяйственных культур в разные периоды их роста и развития ведущими являются разные экологические факторы (при прорастании – температура, в период колошения – количество влаги, во время созревания – количество питательных веществ в почве и т.д.). В каждый период жизни объекта будут и свои факторы, определяющие его развитие, в том числе и свойства почв.

По закону относительности действия лимитирующих факторов Лундегарда-Полетаева, форма кривой роста численности популяций (ее биомассы) зависит не только от одного вещества с минимальной концентрацией, но и от концентрации и свойств других ионов, имеющихся в среде. Следует отметить, что одни факторы являются ведущими, другие сопутствующими. Однако, для разных условий, объектов и фаз развития экологические факторы оказывают неодинаковое воздействие. При этом, ведущий фактор может стать сопутствующим, а стимулирующий – угнетающим.

4. Важным является общепринятый постулат, что разнообразие – всегда во благо. (Soule, 1985). Растения всегда образуют сообщества, видовой состав которых зависит от почвенных и климатических условий. В этих сообществах разные виды растений и обитающие живые организмы связаны многочисленными взаимосвязями и образуют устойчивое единое целое, способное противостоять неблагоприятным условиям среды, массовому распределению вредителей и болезней. Везде, где абиотические факторы среды близки к оптимальным для жизни, возникают богатые видами и, как правило, устойчивые сообщества.

Закон необходимости разнообразия утверждает, что система не может сформироваться из абсолютно одинаковых элементов или на принципе монополизма. Монокультура не обладает свойствами самоподдержания.

Эффект группы состоит в том, что нормальное развитие многих видов возможно лишь при объединении их в различные группы. «Эффектом группы» называют улучшение физиологических процессов, ведущее к повышению устойчивости и жизнеспособности при совместном существовании. С биоразнообразием связаны и особенности сообществ, как надорганизованных систем (Тишлер, 1971): 1) сообщества всегда возникают из готовых частей – представителей различных видов или целых комплексов их, имеющихся в окружающей среде; 2) части сообщества заменяемы: один вид (или комплекс видов) может занять место другого со сходными экологическими требованиями, без ущерба для системы; 3) сообщества существуют, в основном, за счет уравновешения противоположно направленных сил; 4) сообщества основаны на количественном регулировании одних видов другими; 5) размеры сообществ определяются внешними причинами, а предельные размеры организмов ограничены их внутренней наследственной программой. Приспособительные возможности у популяции гораздо выше, чем у слагающих ее индивидуумов. Чем сложнее структура популяции, тем выше ее приспособительные возможности. Взаимовлияние популяций двух видов может быть нейтральным, положительным, нейтральным для одного и отрицательным для другого, положительным для одного и отрицательным для другого.

5. Большое значение при разработке систем земледелия имеет закон возврата.

Вынос элементов питания с урожаем, а также другие потери веществ, связанные с деятельностью человека (эрозионные, усиление миграционных потоков в сопредельные среды и т.д.), приводят к снижению уровня плодородия, и должны устраняться принятыми системами земледелия. Кирюшин В.И. отмечает, что охрана природных жизнеобеспечивающих систем предполагает систему мер по предотвращению их загрязнения, поддержанию целостности и восстановлению, т.е. возврат долгов природе и введение социально-экономического развития в экологически безопасное русло, определенное возможностями природно-ресурсного потенциала регионов, емкостью ландшафтов. При этом, под емкостью ландшафтов понимается способность их принять и трансформировать определенное количество вещества и энергии при устойчивости функционирования. Антропогенные воздействия должны выбираться с учетом направленности природных процессов, памятуя, что противодействие им затратно и сопряжено с экологическим риском.

6. Предельно допустимые концентрации токсикантов

Предельно допустимые концентрации токсикантов для отдельных компонентов системы зависят от сочетания внешних факторов, свойств почв, экологических требований произрастающих культур. Большое значение имеет оценка устойчивости почв и растений к антропогенным стрессам.

Согласно закону толерантности Шелфорда В., лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости (толерантности) организма к данному фактору. Один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие, и, наоборот, один и тот же результат может быть получен разными путями: 1) толерантность по отношению к данному фактору и положение зоны оптимума могут быть различными для различных физиологических и –экологических функций организма (Одум Ю.); 2) границы экологической толерантности характеризуют не биологические виды, а отдельные их географические популяции (Одум Ю.); 3) толерантность организма, по отношению к одному и тому же фактору, зависит от пола и возраста (Одум Ю.); 4) оптимальная зона и пределы выносливости организма, по отношению к тому или иному фактору, могут заметно смещаться в зависимости от того, в каком сочетании и с какой силой действуют одновременно другие факторы; 5) интегральное действие на организм совокупности экологических факторов осложнено явлениями монодоминантности, синергизма, антагонизма и провокационности их совместного действия.

При этом, монодоминантность проявляется в том, что один из факторов, находясь либо в минимуме, либо в максимуме, оказывает столь сильное воздействие, что подавляет влияние всех остальных факторов. Синергизм проявляется в усилении одним фактором действия другого. Антагонизм проявляется в ослаблении одним фактором действия другого. Провокационность соответствует сочетанию стимулирующих веществ с летальными при усилении отрицательных эффектов. Указанные взаимосвязи проявляются как при действии нескольких факторов на ландшафт, на почву, так и на растения, биоту.

7.Важным вопросом является прогноз максимально возможной биологической продуктивности для конкретных территорий.

Популяциям свойственны рост, развитие, способность поддерживать существование в постоянно меняющихся условиях. Когда среда не оказывает ограничивающего влияния, скорость роста популяции на особь для данных климатических условий постоянна и максимальна. В то же время, благодаря саморегулированию, прирост массы и распределение отдельных членов экосистемы всегда подчинены функциональному целому, и популяции не растут безгранично.

В биосфере сама биота, в соответствии с принципом Ле-Шателье, обеспечивает стабильность окружающей среды. Биосфера, в целом и естественные экосистемы, обладают предельной хозяйственной емкостью; превышение верхнего порога этой емкости нарушает устойчивость биоты и окружающей среды. В пределах хозяйственной емкости биосфера и земные экосистемы, подчиняясь принципу Ле-Шателье, быстро восстанавливают все нарушения окружающей среды, и последняя остается устойчивой; способность восстановления в абсолютных величинах, как и предел хозяйственной емкости. Превышение хозяйственной емкости приводит к размыканию биогенов и деформации окружающей среды. Нарушения окружающей среды обусловливают изменения экологических ниш, как следствие, ведут к распаду геномов и, в дальнейшем, к исчезновению многих видов организмов (Экология, охрана природы и экологическая безопасность, 1997; Агроэкология, 2000).

Необходимо ограничение максимальной продуктивности агроценозов, в связи с техногенной нагрузкой, токсичными по величине потоками вещества и энергии, предельно допустимый уровень которых, обусловлен буферными свойствами почв, ландшафтов. С этой точки зрения, нельзя создавать почву с высоким фоном элементов питания, по загрязняющую грунтовые воды, воздух, сельскохозяйственную продукцию. Избыток каких-либо элементов в почве, уменьшение степени разнообразия экологических ниш приводит к уменьшению степени самоорганизации системы, что, в дальнейшем, требует и гораздо больше энергии для ее оптимизации.

Закономерности, аксиомы, постулаты и правила агроэкологии

При рассмотрении установленных зависимостей влияния антропогенных факторов на агрофитоценозы целесообразно рассматривать законы, закономерности, постулаты, правила и эмпирические зависимости. Они выяснены для агроэкосистем, почв, системы почва-растение, отдельных процессов, для конкретных условий и ситуаций. Закономерности и правила агроэкологии могут рассматриваться на разном уровне для ландшафтов, системы почва-растение, почв, для деградации и окультуривания почв и.д. 

Преображенским А.А. сформулированы следующие основные системные ландшафтно-географические постулаты: 1) системная аксиома – окружающий нас мир системен; все разнообразные элементы его взаимосвязаны; 2) иерархическая аксиома – любая система состоит из системы низкого ранга и входит в системы высшего ранга; 3) временная аксиома – наблюдаемые явления – момент в общем ходе прошлого и будущего развития; 4) планетарная аксиома – планеты – открытые системы; 5) земледельческая аксиома; 6) ландшафтная аксиома – существует иерархическое подчинение ландшафтов.

Геохимическая деятельность организмов

К фундаментальным законам, управляющим геохимической деятельностью живых организмов в биосфере, относятся, в частности, следующие: 1) биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению; 2) эволюция видов, в ходе геологического времени приводящая к созданию устойчивых в биосфере форм жизни, ведет в направлении, увеличивающем биогенную миграцию атомов в биосфере.

Распределение химических элементов в земной коре подчиняется следующим закономерностям: 1) закону Кларка-Вернадского, согласно которому все химические элементы есть везде; 2) закону Ферсмана, согласно которому с усложнением строения атомного ядра химических элементов, его утяжелением, кларки элементов уменьшаются; 3) в земной коре преобладают элементы с четными порядковыми номерами и атомными числами; 4) среди соседних элементов, у четных – всегда кларки выше, чем у нечетных (Одуо, Гаркис); 5) особенно велики кларки атомных элементов, атомная масса которых делится на 4 (O, Mg, Si, Ca), а, начиная с А1, наибольшими кларками обладает каждый 6 элемент (O, Si, Ca, Fe) (Орлов Д.С., Безуглова О.С., 2000).

Условия прогрессивного развития систем

В соответствии с принципами энергоэнтропики, в каждом классе материальных систем преимущественное развитие получают те, которые при данной совокупности внутренних и внешних условий достигают максимального значения негэнтропии или максимальной энергетической эффективности (КПД, долговечности надежности). Это характерно для прогрессивно развивающихся почв. При нарушении экологической обстановки происходит деградация почв, начинает преобладать тенденция к возрастанию энтропии, рассеивание вещества и энергии, уменьшению свободной энергии системы. При прогрессивном развитии экологическая система достигает характерного для каждой совокупности внешних и внутренних условий предела, который можно выразить максимальным значением соответствующего вида негэнтропии. Это следует учитывать и при планировании уровня плодородия почв, урожая сельскохозяйственных культур.

Условия устойчивости систем к антропогенным стрессам

1. Закон Эшби – системы, состоящие из большого числа разнообразных элементов, менее подвержены колебаниям. Для агрофитоценозов на основании этого закона можно выделить следующие зависимости. Чем более контрастна и сложна структура почвенного покрова, тем устойчивее почвенный покров к стрессовым ситуациям и антропогенным воздействиям. (Однако, это не значит, что он более пригоден для сельскохозяйственного производства). Сформированные в течение длительного времени горизонты почв не только являются отражением предыстории их развития и эволюции, но служат пакетом геохимических барьеров, обусловливающих развитие почв с другими компонентами экосистемы, являются факторами развития растений. Чем более сложен фракционный состав соединений элементов в почве, тем она более устойчива к факторам, изменяющим их подвижность. Естественные ценозы, содержащие большое число видов растений более устойчивы к стрессовым ситуациям и антропогенным воздействиям, чем культурные ценозы.

2. Факторы жизни растений, которыми их обеспечивает почва, тесно взаимосвязаны друг с другом. Изменение одного параметра почв до пределов, нехарактерных для почвы, но необходимых для развития определенного вида растений, приводит и к изменению всех других параметров почв, в большей или меньшей степени. Оптимизация одних свойств почв приводит к ухудшению других свойств. Поэтому для развития растений необходима не гомогенная, а гетерогенная почва. (Например, оптимизируя рН до рН=6,5-7,0, мы вызываем осаждение поливалентных металлов, увеличивая окислительно-восстановительный потенциал почвы, мы уменьшаем доступность для растений соединений железа и марганца). Оструктуривание почв приводит к возникновению разнокачественных зон на поверхности и внутри структурных отдельностей, что увеличивает устойчивость системы к внешним воздействиям.

3. Любой уровень антропогенной нагрузки на почву приводит к изменению ее свойств и сдвигает равновесие, а при длительном действии приводит к достижению новых условий равновесия. Эти новые достигнутые условия требуют для сохранения равновесия постоянного воздействия на почву тех же уровней антропогенной нагрузки (в качественном и количественном отношении).

4. Устойчивость системы к воздействию внешних факторов зависит от устойчивости  структурных взаимосвязей в ней и адекватности ответных реакций на внешние воздействия. По Гришину П.Н., показатель устойчивости системы «почва» к антропогенным нагрузкам описывается следующим выражением:

0 < hУСТ = å êb1 ê : (åå êai ê+ å êbiê, где а – коэффициент, характеризующий положительное или отрицательное влияние входной переменной Хd и выходную переменную Х1 в уравнениях регрессии; hУСТ – устойчивость взаимосвязей параметров плодородия – функция саморегулирования почвы, как сложной системы. Указанный показатель характеризует степень экологической буферности почв, то есть способности почвы сохранять свои структурно-функциональные характеристики при массированном антропогенном воздействии. В ряде случаев проявляется правило, согласно которому эффект действия одного фактора на объект проявляется только при совместном действии другого фактора или двух других факторов, который можно было бы назвать эффектом необходимости третьего. При экстремально высоких воздействиях на систему число степеней свободы в ней уменьшается.          

Эффект воздействия любого фактора на объект зависит от скорости процесса воздействия. Однако, для разных объектов понятия скорости и времени относительны. (Один день для развития мотылька, живущего 1 день, несет совсем другую временную функцию, чем 1 день для древесного растения, живущего 100-1000 лет, пшеницы, развивающейся 1 вегетационный период, почвы, развивающейся 500 тысяч лет). У каждого объекта свое исчисление времени, определяемое интенсивностью и скоростью внутренних процессов, в первом приближении, пропорциональных продолжительности жизни.

При оценке влияния продолжительности воздействия и скорости воздействия на объект существуют закономерности: 1) более молодые объекты более податливы воздействию; 2) эффект определяется продолжительностью воздействия относительно времени всей жизни; 3) фазой развития объекта; 4) продолжительностью воздействия относительно скорости развития процессов в организме; 5) кратностью включения действующего на объект вещества в процессы метаболизма объекта в течение его жизни, наиболее активной фазы развития; 6) градиентом изменения интенсивности воздействия во времени; 7) закономерной сменой кода воздействия во времени. Адаптация и селективность почв и растений к определенным факторам внешней среды, заложенная в молодом возрасте объекта, сохраняется и в течение всей жизни объекта. Совокупность факторов воздействует сильнее всего на организмы в те фазы их развития, когда они имеют наименьшую толерантность.

Формирование почв

1. Формирование почв, как компонента экосистемы и ее экологических функций обусловлено взаимовлиянием на почву внешних факторов. В отдельных случаях влияние одного из внешних факторов, в значительной степени, превышает влияние других, но в большинстве случаев отмечается сложное  взаимовлияние факторов на формирование почв и их экологических функций

2. Эволюция почв обусловлена не только известными факторами почвообразования (климатом, рельефом, растительностью, почвообразующими породами, возрастом почв, антропогенным влиянием), но и воздействием различных видов геофизических полей. Эффект их влияния определяется при сложении векторов с учетом скалярных величин действия этих факторов на протекающие в почве процессы. Часто силовые линии геофизических полей определяют накопление токсикантов и проявление экологических функций почв, формирование почвенно-геохимических барьеров. В таких ситуациях очаги накопления токсикантов не могут быть устранены без коренной переделки природы, и их лучше оставить без изменения, т.к. эффект любых мелиораций будет исчезать через несколько лет.

3. Формирование экологических функций почв, как компонента экосистемы, зависит от экологических функций растительности, рельефа, грунтовых вод, почвообразующих пород. Отмечается аддитивное взаимодействие, синергизм и антагонизм взаимного влияния компонентов экосистемы, внешних факторов, свойств, процессов и режимов почв.

4. Существует взаимосвязь состояния соединений ионов на гранях отдельностей, в педах и кутанах, в почвенном растворе, в горизонте, профиле почв, в отдельном компоненте структуры почвенного покрова, в ландшафте. Существует иерархическое соподчинение состояния соединений ионов, концентрационных и других полей в отдельных компонентах ландшафта. Все части почвы связаны с целым функциональным ее механизмом и только через это целое взаимодействуют между собой.

5. Активный слой почвенного покрова обладает свойством накапливать результаты внешних воздействий.

6. Важная движущая сила процессов в системе почва-растение – градиент действующих на систему факторов.

7. По мнению Мотузовой Г.В., у геологической породы с факторами выветривания обратная положительная связь; с каждым шагом выветривания воздействие усиливается.

8. Прогрессивное развитие почв также может лимитироваться недостатком кальция, азота и т.д., избытком свинца и кадмия, но и отсутствуем отдельных видов биоты, резким ингибированием отдельных процессов почвообразования; экстремальными значениями отдельных факторов почвообразования и т.д.

9. Почва развивается и постепенно стареет, приходит к климаксному состоянию, когда накопление энергии находится в соответствии с коэффициентом радиационного баланса и коэффициентом увлажнения. Такое состояние характерно и для культурных почв. Чем более молодая почва, тем она более динамична и податлива к изменению своих свойств до оптимума, чаще более плодородна с учетом коэффициента использования солнечной и антропогенно затраченной энергии.

10. Развитие экосистем и, в частности, почв и растений определяется трансформацией, миграцией и накоплением не только вещества и энергии, но также информации. Информация заключена в строении почвенного профиля, составе гумуса, вторичных минералов, ППК, новообразований, в структуре почвенного покрова. Эта информация дает возможность проследить путь эволюции почв или отдельных компонентов. Однако, в дополнение к историческому аспекту, следует учитывать и ряд аспектов информации имеющих практическое значение.

а) Информация, заключенная в почве, позволяет оценить будущий ход их развития. Прошлое определяет, в значительной степени, будущее. Будущее определяет настоящее. Зная промежуточный этап стадии, например, химической реакции, мы можем оценить и конечный этап. Знание будущего пути развития почв позволяет найти и пути их регулирования.

б) В отдельных горизонтах почв заключена не только информация об эволюции почв, но они имеют и разные агрономически важные свойства. Вряд ли правильно при выращивании культур (и при оценке трансформации ионов в почвах) не учитывать градиент физических полей между горизонтами. Неверно оценивать плодородие только по свойствам горизонта Ап, ведь в разные фазы развития растений в каждом горизонте будет и определенное количество корней и, если один из подпахотных корнеобитаемых слоев токсичен, то плодородие Ап не гарантирует урожай.

в) Свойства почв значительно отличаются в разных гранях структурных отдельностей; они значительно отличаются в разных слоях структурных отдельностей (как в кольцах на срезе деревьев). Очевидно, что процессы взаимодействия, в том числе и удобрений, протекают на грани отдельностей, а не внутри них. Растения также больше питаются с поверхностей граней. Недооценка этого явления вносит существенные ошибки в разрабатываемые проекты.

г) Свойства почв в поле и сухих растертых образцов существенно отличаются. В полевых условиях мы оцениваем «живые» почвы и современные процессы, которые определяют сейчас развитие почв и растений. В сухих растертых образцах мы оцениваем изменения, накопившиеся за много лет. Надо осознать, что, как по мертвой птичке нельзя оценить процессы при ее жизни, так и по анализу мертвых почв нельзя полно судить об их жизни.

д) В почве, как в матрице, заключены код и память для воспроизводства подобных существующим в почве компонентов. Например, внеся с удобрениями в дерново-подзолистую почву фосфаты кальция, мы находим их трансформированными в фосфаты железа и алюминия, характерные для этой почвы. Внеся в эту почву любые органические остатки, мы через определенный промежуток времени находим в почве гумус с характерным для нее соотношением СГКФК = 0,6-0,7 и т.д.

С практической точки зрения, необходимо знать эту трансформирующую способность почв, имеющую определенную емкость. Это позволяет прогнозировать поведение удобрений, мелиорантов и токсикантов в конкретных почвах. Информацию о свойствах почв несут излучаемые и отражаемые поля, воздушные экзаметаболиты, водные мигранты. Эту информацию улавливают растения; она регулирует их развитие. Информация – это не только ключ к познанию происхождения почв, это закодированный путь саморазвития, это перспективный путь регулирования, как биопродуктивности угодий, так и плодородия почв. Каждая часть почвы несет информацию, которая, посредством селективных носителей, распространяется повсюду.